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ABSTRACT
Federated learning provides the ability to learn over heterogeneous user data in a distributed manner while
preserving user privacy. However, its current client selection technique is a source of bias as it discriminates
against slow clients. For starters, it selects clients that satisfy certain network and system-specific criteria, thus not
selecting slow clients. Even when such clients are included in the training process, they either struggle with the
training or are dropped altogether for being too slow. Our proposed idea looks to find a sweet spot between fast
convergence and heterogeneity by looking at smart client selection and scheduling techniques.

1 BACKGROUND

The past decade has seen an explosion of data-driven and
machine learning-based applications that solve different
problems. This naturally leads to a lot of fruitful discussions
about ownership and access control of these data. Users are
concerned about the privacy of their sensitive data and do
not prefer sharing it with third-party organizations. How-
ever, diverse and heterogeneous training data is of great
importance to those models. Thus, recently we have seen
a lot of work on privacy-preserving designs of machine
learning models, popularly known as federated learning.

Federated learning is a privacy-preserving method of dis-
tributed learning over heterogeneous user data. Federated
learning follows the philosophy of “’bringing the code to
data, instead of bringing data to code” to address the above-
mentioned privacy concerns (7; 22). The architecture pre-
sented by Bonawitz et. al. (7) consists of a server respon-
sible for selecting client devices for training from a pool
of available devices in each round. The server maintains a
copy of the global model, which is distributed to selected
client devices at the start of each round. Each client trains
the model with their local data and sends the gradients back
to the server. The server calculates the average gradient
using the FedAvg algorithm after collecting gradients. This
average gradient is used to update the global model, which
is then distributed in the next round.

Since gradients can still reveal information about the data,
gradient updates sent by clients are preserved with secure
aggregation (8) to enforce privacy further. Secure aggre-
gation prevents the server from learning individual clients’
gradients but learns the aggregate one once responses from
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all clients are received. This couples with the already syn-
chronous nature of federated learning, and makes the per-
formance of training susceptible to degradation due to strag-
glers. Thus, it is desirable from the angle of performance
that the selected devices are almost homogeneous with re-
spect to the network and computation power. However,
mobile devices can have significantly different network
conditions(11) and compute capability. Most of the cur-
rent designs select clients randomly from a pool of devices
that satisfy certain criteria e.g. minimum 2 GB memory,
unmetered network, etc (7; 19). This technique of client
selection introduces explicit bias in the system since fac-
tors like device memory and quality of network are directly
linked with socioeconomic status (6; 17; 19). Thus, it’s crit-
ical to improve client selection mechanisms to build models
that are void of this explicit bias.

2 RELATED WORK

A variety of solutions have been proposed for this problem,
ranging from model compression to different strategies of
client selection. Firstly, we discuss how existing work re-
duces the training time of slow clients, and still incorporates
them to mitigate bias. Then, we discuss current smart client
selection strategies.

2.1 Bias Mitigation Strategies

As we discussed, the existing design of federated learn-
ing introduces explicit bias since parameters based on
which devices are selected are linked with socioeconomic
factors(6; 17; 19). Bias can also come because of the non-
IID distribution of data. However, there are some tech-
niques to circumvent it since it’s a deep learning optimiza-
tion problem(33; 20; 12). To mitigate the explicit bias dis-
cussed above, we need to include slow devices in the training
process. Clearly doing this comes at the cost of slow con-
vergence, owing to the slow clients straggling the process.
However, there has been some work on reducing computa-
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tion and network costs for slow clients at the expense of the
accuracy of the model (31; 20; 18). For example Li et. al.
(20) allows different devices to perform variable amount of
workload depending on their resources. Slow clients can run
fewer epochs or use lesser input data. Similarly, Kone¢ny et.
al. (18) compresses model updates in a lossy fashion to re-
duce communication costs at the expense of the accuracy of
the sent parameters. Abay et al(6) proposes a fairness-aware
regularization in the loss function. However, we argue that
such techniques do not truly address the bias problem be-
cause there is still discrimination in how slow clients are
handled. An ideal design should give equal opportunity for
all clients to contribute to the global model.

2.2 Clients Selection Strategies

It’s clear that the heterogeneous communication environ-
ments and computation resources at clients can hamper the
overall training speed. To accelerate the convergence speed
under this client heterogeneity, existing work has investi-
gated to make smarter decisions about client selection to
alleviate the communication overhead.

In the prevalent random client selection strategy, all clients
participate in the client selection phase in every round. The
server uniformly and randomly selects a subset of clients
from the pool(23; 21; 26) for training. The chosen clients
do multiple iterations of SGD on the local data, given the
ML model and the latest parameters from the server. Finally,
the server collects and aggregates the computed gradients
to update the global parameters. Li et. al. (21) provides
a necessary convergence condition for federated learning
on non-iid data with partial client participation. Ruan et.
al. (26) offer a selection scheme that converges even when
devices can flexibly join or leave the training.

Some recent work looks into client selection based on dif-
ferent criteria like the higher potential for global model
convergence or good network conditions. Cho et. al. (12)
reveal that a biased selection towards clients with higher
local loss can increase the speed of convergence. This is
because higher loss indicates a higher potential for model
improvement. The proposed POWER-OF-CHOICE algo-
rithm can yield up to 3X faster convergence and 10% higher
test accuracy compared with conventional federated learn-
ing with random client selection. FedCS(24) requests the
resource information, such as wireless network bandwidth
and compute capability , from selected clients before the
distribution of parameters of the global model. It then only
collects the gradients from clients which can update and
upload the parameters within a deadline. Although these
biased client selection models can facilitate quicker conver-
gence, it sacrifices the original benefit of federated learning:
the heterogeneity of data. TiFL(10) is another recent work
that explores tiering together clients with similar training

times and prioritizing faster tiers to speed up training. It
only temporarily prioritizes slower tiers when the accuracy
of the global model is poor during testing on devices from
slower tiers. In contrast, FedSS’s client selection does not
lean toward any particular cluster during training and of-
fers equal opportunities for every client to contribute to the
training.

2.3 Training Policies

Recent work also shows that the straggler problem can be
eliminated by using asynchronous training policies. For
example, in FedAsync (30), the server does not wait for all
clients to send their model updates before performing aver-
age. In fact, clients can request a central model whenever
they complete their local training. This speeds up train-
ing but results in a higher degree of communication and
complications due to the staleness of the model (14; 28).
Semi-synchronous training (28) tries to find the best of both
worlds. It has a fixed point at which all clients must synchro-
nize at the central server but avoids idling by letting faster
clients continue training. However, this is orthogonal to our
clustering strategy. Semi-synchronous training can still ben-
efit from our clustering by dividing clients into clusters and
having different synchronization deadlines for each cluster.
Such clustering will help reduce bias by minimizing extra
training that fast clients may do in any round.

3 MOTIVATION

As evidenced by the related work, federated learning be-
tween clients with heterogeneous data, devices, and net-
works can result in prolonged convergence time. Appro-
priate client selection decisions can result in quick conver-
gence. The convergence time is determined by two factors:
i) number of rounds until the model convergence condition
is reached and ii) time duration of each round. The number
of rounds can be reduced by selecting clients that add more
value to the learning e.g. high losses. Whereas the duration
of each round is determined by stragglers, thus selecting de-
vices based on hardware and network conditions can reduce
the convergence time.

To avoid the prolonged round duration time caused by
stragglers, we can select clients with similar training
times in each round. Meanwhile, we can randomly
choose clients with different network/computation condi-
tions across rounds to guarantee data heterogeneity. We
understand that slow clients might be in the minority in
some cases, where arranging separate rounds for them can
jeopardize their privacy. To ensure privacy for such rounds
we can fill up the round group with faster clients too. We
visualize and compare this strategy with random selection
in Bonawitz et, al. (7) and FedCS (24) in Fig.1.
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Figure 1. (a) The round time in the random selection scheme is determined by the straggler. (b) While the round time in FedCS is shortest,
client3 and client4 are always excluded because of their long training time and transmission delay. (c) Our scheme reaches the best

trade-off between training time and data heterogeneity.

4 SYSTEM DESIGN

To reduce bias and also ensure faster model convergence,
we propose a smart approach of clients selection. We first
collect the device’s compute capability captured by FLOPS
(Floating point Operations per Second) along with network
conditions such as uplink and downlink bandwidth (13) of
every connected client.

Based on these collected parameters, we categorize clients
into different equal sized clusters. Each cluster comprises
clients with similar training time. We also determine optimal
number of clusters, k, for a given distribution. k is optimized
to minimize training time, while ensuring higher possible
degree of anonymity (high cluster sizes). In every round,
the FedSS server chooses a cluster in a round-robin way and
selects clients within it randomly to ensure equal opportunity
of every client.

There are two basic intuitions behind the approach. 1) Re-
duce bias due to barriers to entry for low bandwidth/ low-end
devices, which in turn minimizes socioeconomic bias. By
giving a fair chance to all the clients, the model gets a better
chance to learn from different data distributions. This also
prevents against content farm attacks using uncompromised
phones with high availability and bandwidth. 2) Have more
coordinated training rounds with similar performing clients
grouped together. We are less likely to run into a situation
where the overall completion time of a round is longer due
to a fraction of low-performing devices.

4.1 Dynamic Client Environment Tracking

From Fig.2, the steps in one training round of FedSS com-
prise: the smart clients’ selection, the distribution of models,
the parallel clients’ training procedure, the collection of up-
dated models, and the aggregation. Except for the first and
the last steps, the time it costs in all other steps is decided
by the clients’ environments. The network conditions, such
as bandwidth and propagation delay, determine the time
taken to distribute the model and collect gradients. Mean-
while, the client’s local compute capability , reflected by
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Figure 2. The workflow to finish one round of synchronous training
in FedSS . The bottleneck includes model distribution, model
collection, and parallel client training, which majorly depend on
the client’s compute capability and network conditions.

available CPUs, GPUs, and memory, determines the time
taken to finish the training procedure. Therefore, FedSS
dynamically tracks and records those parameters of every
connected client, and predicts the approximate time it takes
to accomplish one round.

Let’s assume the model size is M, and the total number
of floating point operations in the model is Flops. Given
the measured network uplink bandwidth U L;, downlink
bandwidth DL;, client’s FLOPS rate FlopsRate; and the
number of samples at client .S; for client ¢;, the overall
round time T; for that client is:

T, =M/UL; + S; - Flops/FlopsRate; + M/DL;
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There are different faithful methods to measure network
bandwidth and FLOPS. Measuring bandwidth has been an
active research topic for a long time. There are active ways
to measure bandwidth such as speed tests and probe trains
(13). There are passive mechanisms as well that estimate
bandwidth based on network usage, e.g. client hints (1),
CRAB (29). Similarly, there are different benchmarks to
measure FLOPS as a proxy of compute capability e.g. Lin-
pack (4) and HPL (3). Additionally, these estimates of com-
pute capability can be improved with real-time observations
of the time taken to run a training round. The mechanisms
to track mentioned metrics are not the contribution of our
work, and we rely on existing work for this.

4.2 Smart Client Selection

After getting the client round time estimate, 7; for most of
the clients, we are ready to run our clustering algorithm.
The clustering algorithm takes the number of clusters as
an input, and based on it, decides the percentiles of the
distribution. For example, if the number of clusters is 3, the
selected percentiles would be 25, 50, and 75. Clients are
sorted into these clusters based on their 7;’s mean-squared
distance from percentile values. Since the purpose of this
clustering is to group together clients with almost similar
training times, equidistant percentile-based centroids serve
this purpose reasonably well.

The clusters constructed this way tend to have an uneven
distribution of clients. The clusters with a shorter average
training time tend to have the most number of clients com-
pared to clusters with a higher average training time. This
means if we have a round-robin pattern of switching be-
tween clusters for each training round, the clients in larger
clusters have a smaller probability of selection. Our straw-
man solution to this problem was to construct a weighted
round-robin scheduling where the weight is based on the
cluster size. For example, assume the cluster sizes(out of
the total number) are 50%, 25%, and 25% for clusters A, B,
and C. The scheduling pattern would be (A, A, B, C), where
cluster A is selected for two rounds compared to the others.

However, we realize that having different-sized clusters
also means that clients have varying degrees of privacy.
Assuming a malicious federated averaging server, it is easier
to deanonymize a participating client in a smaller cluster
than a larger one. Thus, another goal of our clustering
algorithm is to build clusters of roughly the same size to
ensure that the clustering algorithm does not impart any
partiality when it comes to privacy.

We leverage a simple insight to even out clusters created by
our algorithm. As we observed that the slow client clusters
tend to have fewer clients. We pick the slowest clients from
the fast client cluster and migrate them to the slow cluster
until sizes are almost evened out. The inverse of this can also
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Figure 3. Visualization of the process behind finding the optimal
number of clusters (6 in both cases). Also worth noticing is su-
perior efficiency of FedSS ’s clustering algorithm compared to
KMeans.

be done if the fast client cluster is smaller, but we should
be careful so that shifting clients from a slower cluster does
not have a very drastic effect.

4.3 Optimal Number of Clusters

As we pointed out in 4.2, the standalone client selection
algorithm requires the number of clusters as an argument.
However, it can be difficult for the operator to know this.
Thus, we solve for the optimal value of it. Having fewer
clusters is desirable from the perspective of privacy, whereas
more clusters result in a shorter average round time. How-
ever, the average round time has diminishing returns as
we keep increasing the number of clusters. The optimal
number of clusters would be the point after which we see
diminishing improvement in the average round time.

Thus, to find the optimal number of clusters, we simulate the
training process given round-time estimates of clients with
different values of clusters. This gives us the average round
time for the given number of clusters. Then, we use Kneedle
(27) to find the optimal point on the curve of average round
time vs. 1/cluster size. The Fig.3 shows the curve between
average round time and 1/cluster size along with the knee
point found by the Kneedle algorithm.

Fig.3 also compares the effectiveness of our algorithm as
compared to KMeans. This is the simulation of training
with 10000 clients and 1000 rounds of training. We also
compared it against DBScan and KDE clustering, which had
almost similar curve as KMeans. The reason our clustering
algorithm does better is that it is optimized to reduce round
time. Whereas Kmeans and other clustering algorithms are
specialized to just cluster data, these clusters may not be
optimal with respect to reducing round time. Moreover, it is
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Figure 4. The RPC-based communication protocol

difficult for clustering algorithms to construct equal-sized
clusters.

4.4 Overhead

This grouping algorithm has a time complexity of NlogN,
where N is the total number of client devices. Finding the
optimal number of clusters can be costly if the number of
clients is quite high. But this computation can be bounded
by limiting the maximum number of clusters to try. For
example, it is not desirable to have tens of clusters for only
100 clients. Moreover, the whole algorithm can be run in
parallel with model training and a new schedule can be
used from the next round onwards. Network conditions
as well as training time can vary over time depending on
factors like competing traffic, memory, or compute back
pressure. Therefore, it is desirable to run the grouping
algorithm periodically on updated estimates of 7;.

In our experimental implementation, we did not implement
mechanisms to measure bandwidth and profile FLOPS be-
cause our experiments are simulation-based. However, ex-
isting mechanisms to do so are very lightweight and do not
have significant overhead. Similarly, the profiling of FLOPS
can be done by measuring the time to train a round.

5 IMPLEMENTATION

Based on an open-source federated learning benchmark
system leaf(9), we implemented FedSS by writing a RPC-
based communication protocol and scheduling logic. We
emulate the real federated learning by doing distributed
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Figure 6. CDF of time taken per round for FedSS , FedCS and
Random Selection.

computations in multiple processes on a single machine.

Fig.4 illustrates the communication protocol in detail. The
coordinator thread in the server asynchronously sends RPC
commands to K selected clients for training with its lo-
cal data, while the server thread keeps listening to clients’
requests to upload the updated models. After the client
finishes training, the server thread receives results and in-
crements a shared variable acked by one. The coordinator
thread waits until acked equals K to continue the aggrega-
tion step and finish this round.

To simulate the variable network, we use Internet Speeds
Data from World Population Review (2). We also simu-
lated the computation time needed for training based on the
benchmarked FLOPS (5) of the top 20 most sold mobile
phones in 2020 (32).
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6 EVALUATION

We evaluate FedSS against our implementation of FedCS
and random client selection. We train a CNN model on the
Femnist dataset, which is distributed in a Non-IID manner
across 20 clients. Initially, we aimed to run our experiments
with a much larger number of clients, but it’s not possible
to run so many instances of concurrent CNN models with
our limited computation resources. For FedSS and random
client selection, we set the number of clients per round to
5. For FedCS, we select 8 clients per round but aggregate
updates with the first 5 responses. To cover system and net-
work heterogeneity, we simulate random delays for different
clients. However, to ensure fairness between our system
and benchmarks, the same delay configurations are used
for clients across all our experiments. Similarly, the same
distribution of datasets between clients is used across our
experiments.

We explored different metrics to evaluate our system. Since
our trade-off is between training time and bias, we primarily
focus on metrics to capture these two.

6.1 Training Time

Measuring training time is easy, we can individually mea-
sure the time taken to complete one round of training at
the server. This time would include time taken to send the
model to all clients concurrently, and time taken by the
clients to train and send back the gradients. This process is
bottlenecked by the slowest client accepted by the server for
aggregation. Thus, time per each round is measured by the
time taken by the slowest client to receive, train and send
back the model.

Fig.5 shows the total time taken by FedSS and benchmarks
to run 2800 rounds of training. FedCS beats our system
by approximately 26% because it only waits for the fastest
clients to send back the gradients in every round. On the
other hand, Random Selection has the longest training time,
since the time taken per round, in this case, is straggled by
the slowest client. FedSS achieves 1.6 shorter training
time than Random Selection. This improvement is possible
because of the optimal client clustering according to the
training time.

It seems that the training time of all systems is linear to the
number of rounds in Fig.5. This is due to too many data
points and doesn’t indicate that the training time of every
round is similar. Fig.6 shows the CDF of training time per
round for all systems. Steps in the line for FedSS show
different training times for different clusters (3 clusters in
this particular case). FedSS , which selects clients with
similar training time together, is able to finish 80% of the
rounds faster than Random and save around 40 hours.
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Figure 7. The average accuracy of the global model for FedSS ,
FedCS and Random Selection.

6.2 Bias

Before measuring bias, let’s take a look at the performance
of the global model after 2800 rounds for each of the selec-
tion strategies. There are many well-established evaluation
metrics for classification models including precision, re-
call, accuracy, F1-score, etc. For our evaluation, we select
accuracy and F1-score as the metrics.

6.2.1 Accuracy

Accuracy is the metric to determine the correct prediction
ratio for the given dataset. It is calculated as :

TP+TN
TP+TN+FP+FN

Fig.7 & 8 respectively show the average accuracy and loss
of the global model across all clients. From the first look, it
seems as if all the strategies have similar performance with
respect to model validity. However, a deeper look at the
model’s metrics shows a clearer picture.

Tablel shows the breakdown of the accuracy of the model
across different kinds of clients. We notice that while FedCS
has an average accuracy as good as Random Selection and
FedSS , it has lower accuracy for slower clients. On the
other hand, its accuracy for faster clients is similar to both
Random Selection and FedSS . This difference in perfor-
mance on slow clients captures the bias in FedCS’s client
selection strategy. Fast clients end up getting a lot more
training opportunities than slow clients.

The 1.5% accuracy difference between FedSS and Random
Selection, although negligible, can be explained from a data
heterogeneity point of view. Recall that Random Selection
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Accuracy for 4 Slowest Clients Accuracy for 4 Fastest Clients
Client | Fedcs | Random | poiss | Client | Fedcs | RM9OM | peggs
Selection Selection

1 68.76 80.12 79.81 1 83.28 85.92 86.80

2 72.34 76.17 76.59 2 55.97 55.97 60.37

3 56.68 67.51 71.33 3 80.07 76.56 78.90

4 67.32 71.25 70.86 4 84.88 79.42 78.13
Average | 66.27 73.76 74.65 | Average | 76.05 74.47 76.05

Table 1. A breakdown of the accuracy of the model across 4 slowest and 4 fastest clients for each of the selection strategies.
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Figure 8. The average loss of the global model for FedSS , FedCS
and Random Selection.

by design does not have any explicit bias due to device
heterogeneity. This is because Random Selection selects
clients randomly and then waits for all of them to respond
before aggregating. Thus, the 1% difference in its accuracy
when compared to faster vs slower clients, can solely be
attributed to data heterogeneity. The fact that FedSS does as
good as Random Selection while reducing the training time
by a huge margin shows promise that FedSS can reduce bias
and amortize the cost of slow nodes.

6.2.2 FI Score

Fl1-score is a metric to determine model performance by
using both, precision and recall values. Precision is the
metric to determine the percentage of correct results out of
all the results for a given class. It is given as :

TP/(TP + FP)

Recall is the metric to determine the percentage of correct
results out of all the true results for a given class. It is given
as:

TP/(TP+ FN)
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Figure 9. The average F1 score of the global model for FedSS ,
FedCS and Random Selection.

F1 score, also known as the balanced F score, is the har-
monic mean of precision and recall.

9 precision x recall
*

precision + recall

For a multi-class classification, the F1 score is given as the
average of the F1 score of each class based on averaging
scheme. For our experiments, we have selected weighted
averaging to deal with class imbalance issues due to the
non-iid distribution of data across multiple clients.

Table2 shows the breakdown of the F1-score for the slowest
and the fastest clients trained in our experiment. The results
are consistent with the accuracy scores. FedSS achieves
results similar to FedCS for the fastest clients and improves
the results by 16% for the slowest clients as compared to
FedCS. Similar to accuracy, the results from FedSS match
Random Selection while taking considerably less amount
of time to train.
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F1 score for 4 Slowest Clients F1 score for 4 Fastest Clients
Client | FedCs | R3M9OM | poysq | Client | Feacs | RaMOM | geggs
Selection Selection

1 67.10 78.08 77.22 1 81.48 83.72 84.45

2 69.00 72.58 73.51 2 56.34 56.86 60.85

3 54.04 66.32 69.97 3 77.50 73.60 75.64

4 62.28 68.02 67.69 4 85.13 79.39 78.14
Average | 62.60 71.25 72.09 | Average | 75.11 73.39 74.77

Table 2. A breakdown of F1 score of model across 4 slowest and 4 fastest clients for each of the selection strategies.

7 FUTURE WORK

We discuss the limitations of FedSS and the future work
in this section. While FedSS achieves the best trade-off
between training time and data heterogeneity in our testbed,
we have some restrictions in experiments that need more
work and real-world experimentation.

Experimental Setup: Currently, we are bound to work
on our local setup, which restricts us to be able to run ex-
periments with only 20 clients. Running with more clients
results in severe resource congestion(GPUs and memory).
We expect better performance with more clients with our
smart clustering and selection. Also, it would be really
valuable to be able to run our setup with some real devices,
along with implementations to track the client environment.

Handling Churn: Currently FedSS assumes that all clients
join in the beginning and maintain available during the
whole training procedure, which may not be true in real-
world federated learning. Recalling that it takes a few rounds
for FedSS to measure and profile the new client’s network
condition and compute capability , it can be hard for FedSS
to track this information accurately in the scenario where
clients join and leave frequently.

To mitigate the possible performance degradation due to the
measurement and profiling delay of newly connected clients,
we propose to collect the hardware specifications of clients,
such as processor types and memory size, to initialize the
grouping based on some regression models. The rationale
behind it is that clients with similar hardware should have
similar computation capability under most circumstances
(unless many other background tasks compete for resources).
Whenever a new client joins, FedSS takes one RTT to collect
this information and determine its initial group based on the
model, which is still better than random initialization.

Data Heterogeneity: FedSS treats all clients equally in
every selection, which may not be the optimal solution.
Although the selection is unbiased, the data heterogeneity
itself among clients is another important source of bias(17;
33; 16). If a subset of clients with similar kinds of data
is picked most of the time, the model will converge faster
but can have a severe bias to the data distribution of that

subset and may not be able to capture the true global data
distribution.

To overcome this issue, we want to explore the possibility
to introduce the training loss of individual clients into the
client selection process. Specifically in every round, if the
training loss for a particular client is non-significant, we
exclude it from selection for the next few rounds. This will
improve the probability of other clients contributing towards
the global model and also prevent model askew.

Scalability and Fault-tolerance FedSS applies only one
server in the system, which induces a communication bot-
tleneck and a single point of failure. We plan to leverage
locality-aware multi-server architecture to enhance scala-
bility, fault-tolerance, and even training performance in the
future.

Firstly, a locality-aware server tends to schedule and dissem-
inate its model to local clients with better network service,
which alleviates the communication bottleneck on the server
side and reduces the ratio of stragglers resulting from the
network. Secondly, multiple servers can apply a consen-
sus algorithm to replicate the training state of each other
to tolerate failure. Lastly, for geographically distributed
applications such as next work prediction(15) and geo-local
language translation(25), a locality-aware server can capture
and preserve those geo-local characteristics better.

8 CONCLUSION

Federated learning due to its distributed nature of training
machine learning model suffers from the issues of data and
device heterogeneity. When we talk about device hetero-
geneity, there exists a trade-off between short training time
and bias, as existing schemes end up dropping slower clients.
We show this trade-off by comparing existing mechanisms
of client selection. We then argue that to eliminate bias, it is
necessary to make slow clients part of training. We present
FedSS which finds a sweet spot between short training time
and handling device heterogeneity by performing a smart
selection of clients.
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