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Abstract. This paper focuses on 5G RAN slicing, where the
5G radio resources must be divided across slices (or enter-
prises) so as to achieve high spectrum efficiency, fairness and
isolation across slices, and the ability for each slice to cus-
tomize how the radio resources are divided across its own
users. Realizing these goals requires accounting for the chan-
nel quality for each user (that varies over time and frequency
domain) at both levels – inter-slice scheduling (i.e. dividing
resources across slices) and enterprise scheduling (i.e. divid-
ing resources within a slice). However, a cyclic dependency
between the inter-slice and enterprise schedulers makes it
difficult to incorporate channel awareness at both levels. We
observe that the cyclic dependency can be broken if both
the inter-slice and enterprise schedulers are greedy. Armed
with this insight, we design RadioSaber, the first RAN slic-
ing mechanism to do channel-aware inter-slice and enterprise
scheduling. We implement RadioSaber on an open-source
RAN simulator, and our evaluation shows how RadioSaber
can achieve 17%-72% better throughput than the state-of-the-
art RAN slicing technique (that performs channel-agnostic
inter-slice scheduling), while meeting the primary goals of
fairness across slices and the ability to support a wide variety
of customizable enterprise scheduling policies.

1 Introduction

Network slicing is one of the key new features introduced in
the 5G standards [3, 9, 37]. It refers to dividing network re-
sources among different services or groups of users to create
virtual customizable networks. Such virtualization enables
cellular networks to expand beyond the classical “individual
mobile user” use-case to a more general “groups of users”
use-case which can support new applications with different
requirements. These groups of users (typically referred to as
enterprises in 5G) enter into service level agreements (SLA)
with the network operator, which provides two features: (1) It
governs the type of service and the total amount of resources
allocated to each slice. For example, it can provide an ultra-
reliable low-latency communication for first responders, con-
nected vehicles, or hospitals performing remote surgeries [20].
It can provide cheap and scalable IoT connectivity for farmers
using sensors to monitor crops and cities deploying sensors
for traffic or air quality monitoring [18]. It can also provide
high throughput connectivity for companies with multiple
users as well as educational and training institutions using
VR/AR [36]. (2) It allows each slice (or enterprise) to cus-
tomize their virtual networks and dynamically manage their
resources [22, 41]. For example, a farming enterprise might
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Figure 1: RAN Slicing of resources across 4 enterprises.

want to give higher bandwidth to drones collecting aerial im-
ages of crops as opposed to soil moisture sensors, or a hospital
might want to prioritize traffic for critical remote surgeries at
different times of the day.

Network slicing has two components: 5G RAN (Radio
Access Network) slicing and 5G core slicing [11, 29, 30, 44].
This paper focuses on RAN slicing as the RAN is typically
the bottleneck in cellular networks [11, 27]. The goal is to
divide physical layer resources at the base station (referred
to as gNB in 5G) among different enterprises with devices
connected to that gNB. These resources include time slots as
well as frequency sub-bands used for transmission as shown
in Fig. 1. Ideally, the RAN should schedule these resources
in a manner that:

(1) Achieves high spectrum efficiency.
(2) Ensures fairness among enterprises subject to their SLAs.
(3) Allows enterprises to customize their scheduling policies.

Realizing the above goals, however, can be challenging in
wireless networks because the throughput achieved by using a
certain resource block is highly dependent on which user gets
that block. In particular, the quality of the wireless channel
can change drastically between frequency bands, between
users, and over time. This well known phenomena is called
frequency selective fading and is shown in Fig. 2 where the
capacity can vary by up to 9× across 100 resource blocks
(frequency sub-bands) for two users in a 20 MHz LTE band-
width. Frequency selective fading is even more prominent in
5G where the total bandwidth is expanded to 100 MHz and up
to 400 MHz [6]. Allocating resources in a channel agnostic
manner can lead to inefficient spectrum usage and unfairness
among different slices (enterprises) [10, 22].

Past work has considered the problem of channel aware
spectrum allocation [2, 4, 38, 45], channel aware hierarchi-
cal resource scheduling in WiMax [21], and RAN virtual-
ization in the context of MVNOs (Mobile Virtual Network
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Figure 2: The channel quality across 100 RBs for two users
in a 20MHz LTE downlink.

Operators)1 [9, 22]. However, state-of-the-art techniques can
only account for the channel quality between users within
the same slice (as detailed in § 2). In other words, only after
the inter-slice scheduler allocates resources to different slices
irrespective of channel quality, each enterprise can run a chan-
nel aware scheduler. Hence, a slice can end up with resources
that have bad channel quality for its users which significantly
degrades the throughput as we demonstrate in §3.1.

Enabling channel aware scheduling at both the inter-slice
scheduler and enterprise scheduler leads to a chicken and
egg problem. The enterprise scheduler cannot allocate re-
sources in a channel aware manner before it knows all the
resources the inter-slice scheduler will give it, and the inter-
slice scheduler cannot allocate resources among slices in a
channel aware manner if it does not know to which user in
the slice the enterprise scheduler will give a certain resource.
One way to break this deadlock is to enumerate through all
possible resource allocations and run the enterprise scheduler
for each one. However, enumerating all possibilities leads to
exponential complexity and is intractable. As a result, state-
of-the-art work only uses a channel agnostic inter-slice sched-
uler [9, 21, 22].

In this paper, we present RadioSaber, a RAN slicing pol-
icy that enables channel aware resource allocation at both
the inter-slice scheduler and the enterprise scheduler while
allowing each enterprise to customize their scheduling policy.
RadioSaber’s design is based on a simple idea. Since both
the inter-slice scheduler and the enterprise scheduler must
run at the base station for real-time scheduling, the inter-slice
scheduler can use the enterprise scheduling algorithms as sub-
routines in its algorithm. Both the inter-slice and enterprise
scheduler can be channel aware if the inter-slice scheduler can
call the enterprise scheduling algorithm with the following
query: “If we give resource X to slice A, which user in slice
A will get resource X?” If the enterprise scheduler is able to
reply to this query independent of what other resources the
inter-slice scheduler will allocate to its slice, the inter-slice
scheduler can be channel aware. Specifically, the inter-slice
scheduler can query the enterprise scheduler of each slice,
find the user to which the resource X will be allocated and

1Examples of MVNOs include Straight Talk, Virgin Mobile, & Xfinity
mobile, which do not operate their own networks but rather run their traffic
through Verizon, AT&T, & T-mobile networks.

determine the slice in which X will deliver the best channel
quality.

Being able to answer this query, however, limits the space
of scheduling policies that an enterprise can run. In partic-
ular, the enterprise scheduler must decide how to allocate a
resource X independent of the remaining resources that have
not yet been allocated to it as we show in § 4.1. Hence, its
algorithm must greedily allocate one resource at a time. Most
common practical policies, however, like Max. throughput [4],
proportional fairness [45], QoS-aware scheduling [2,4,38,39]
etc., tend to use greedy algorithms that satisfy the above re-
quirement. It is worth noting here that when allocating a
resource X, the algorithms can still account for resources that
have already been allocated to the slice in the past (e.g. in or-
der to provide some notion of fairness or demand-awareness),
but not account for resources that are yet to be allocated in
the future. Hence, RadioSaber is able to accommodate poli-
cies that are both channel aware and flexible to the needs of
different slices.

Realizing RadioSaber in practice, however, requires ad-
dressing algorithmic questions like how do we incorporate
the SLA between the operator and the enterprise into the
inter-slice scheduler? In what order does the inter-slice sched-
uler query the resource blocks to decide which slice gets the
block? How do we support customizable enterprise schedul-
ing, while restricting the schedulers to be greedy? How does
the enterprise scheduler balance between channel quality and
other metrics such as flow priorities? We also have to address
several system level questions like what is a good and simple
interface that we can provide to the enterprises to set their
scheduling policies? How do we incorporate RadioSaber into
the current 5G standards? We address the above questions in
detail in §4.2 and § 4.3.

We have implemented RadioSaber and evaluated it using
trace driven simulations. We used an open-source 5G core
network [1] and a popular RAN simulator [34] that is capa-
ble of simulating both the physical layer and higher layers
at the RAN. We evaluate our system using traces of cellu-
lar signals [46], that were collected using software defined
radios. We compare with:(1) NVS [9, 21, 22], a popular algo-
rithm which enables RAN slicing with channel aware enter-
prise scheduler and (2) a global channel aware scheduler that
schedules all users without slicing.

Our results reveal that RadioSaber is able to outperform
NVS, achieving 17%-72% better throughput for backlogged
flows, 2× to 4× lower FCT (flow completion time) for non-
backlogged flows, and 24× lower packet delays for real-time
flows with constant bitrates. Unlike the global channel aware
(but slicing unaware) scheduler that fails to provide any isola-
tion across slices, RadioSaber is able to achieve desired isola-
tion and fairness. Finally, RadioSaber is able to accommodate
enterprise schedulers with various policies and number of
users. Hence, RadioSaber is able to achieve the three goals of
spectrum efficiency, fairness, and customizability.



The paper makes the following contributions:

• We present the first RAN slicing that is channel-aware
both at the inter-slice scheduler and enterprise scheduler.

• We present a new framework for RAN virtualization that
abstracts physical layer scheduling and provides an inter-
face for enterprises to set their own schedulers.

• We implement our techniques and demonstrate significant
improvement in efficiency and fairness.

2 Background & Related Work

In this section, we provide a brief background on the radio
access network (RAN) in cellular networks as well as the
related work for channel aware scheduling and RAN slicing.

1. Resource Blocks: In 5G RANs, the user or device is re-
ferred to as UE (User Equipment) and the base station is
referred to as gNB (next generation Node B). The gNB uses
OFDMA (Orthogonal Frequency Division Multiple Access)
at its PHY and MAC layers in order to divide radio resources
across UEs. In OFDMA, the frequency bandwidth is divided
into sub-carrier frequencies that are orthogonal (i.e. do not in-
terfere) and time is divided into equal slots called TTIs (Trans-
mission Time Interval). A resource block (RB), which is the
smallest resource unit that can be allocated to a UE, is formed
of 12 frequency sub-carriers and 1 TTI slot. Hence, the RBs
are organized into a 2D grid as shown in Fig. 1. In practice,
however, network operators typically schedule resources in
the granularity of resource block groups (RBGs) to minimize
control overhead. Each RBG contains a fixed number of con-
secutive RBs ranging from 1 to 4 [8, 42]. In 4G, each TTI has
a fixed length of 1ms and each sub-carrier has a fixed width of
15 kHz. Thus, the RB spans 12×15 = 180 kHz. 5G, on the
other hand, supports 5 configurable TTI and sub-carrier inter-
vals such that the TTI is 2−µ ms and the sub-carrier interval
is 2µ×15 kHz. µ is commonly referred to as the numerology
and chosen from the values 0,1,2,3,4 depending on the band
of operation [7, 35]. For example, the 5G sub-6GHz band,
supports sub-carrier width of 60 KHz with a TTI of 0.25 ms
for µ = 2 [33, 43]. In this case, the RB spans 720 kHz.

2. Data Rate: The data rate at which a UE can transmit in a
given RB depends on the channel quality which is typically
defined by the SNR (signal-to-noise-ratio). The SNR deter-
mines the capacity of the wireless link and varies across time,
RBs, and users as shown in Fig. 2. The SNR can be computed
at the UE for each OFDM sub-carrier. For a RB or RBG made
of many sub-carriers, the “effective SNR” is typically com-
puted2 as described in [16, 25, 31]. The effective SNR is then
mapped to a discrete value called channel quality indicator

2The effective SNR is not the average across sub-carriers but rather a
weighted exponential average that typically gives a value close to the mini-
mum SNR across sub-carriers. This ensures that the chosen data transmission
rate does not exceed the capacity of the wireless link at any sub-carrier which
would otherwise result in a very high packet loss rate.

UE User Equipment RAN Radio Access Network
gNB 5G Base station TTI Transmission Time Interval
RB Resource Block RBG Resource Block Group
SNR Signal-to-Noise Ratio SLA Service Level Agreement
PF Proportional Fair CQI Channel Quality Indicator
MT Max. Throughput MCS Modulation & Coding Scheme

Table 1: Terms used in 5G networks

(CQI) and periodically reported to the gNB [8]. The CQI is
then used to determine the modulation and coding scheme
(MCS) for the UE which in turn determines the data rate of
the UE. The higher the SNR and channel quality, the higher
order MCS can be used to increase the data rate.

3. Channel Aware Scheduling: The need for channel-aware
scheduling in wireless networks has led to a number of tech-
niques that propose allocating resources across individual
users in a channel-aware manner (e.g. [2,4,13,14,38,39,45]).
In most cases, the scheduling problem is NP-Hard and a
greedy heuristic is adopted whereby RBs are allocated one at
a time to the UE that scores highest on some given metric [4].
These strategies ensure low scheduling overhead and enabling
fast decisions at timescales of a single TTI. Some of the most
common techniques include:
•Maximum Throughput (MT): Assigns the RB to the UE with
the largest CQI to maximize data rate irrespective of fairness.
• Proportional Fair (PF): Extends MT to incorporate fairness
across users by weighing the CQI with the UE’s historical
allocation. This is a very popular strategy in cellular networks
that aims to optimize the sum of the log of throughput of
UEs [17, 24, 45]. The PF metric can also be parameterized to
vary the relative weights of the CQI versus historical alloca-
tion [45].
• Incorporating QoS and delay: The PF metric can be fur-
ther extended to incorporate (i) QoS values that increase the
weights of higher priority UEs [4, 13, 14, 39], or (ii) packet
delays that increase weights of UEs that have been waiting
longer [2, 38, 39].

Non-greedy heuristics have also been proposed for optimiz-
ing proportional fairness [17, 24]. The scheduling problem is
abstracted as an NP-hard integer linear program and solved
using a sub-optimal non-greedy algorithm. Such algorithms,
however, are computationally very expensive and must use
GPUs to compute their solutions [17].

4. RAN Slicing: The inter-slice scheduler provides each en-
terprise with a slice of the RAN by allocating a set of virtual
RBs which it maps to physical RBs. In order to support chan-
nel aware scheduling, it also provides the enterprise scheduler
with the CQIs of the UEs of this enterprise for each virtual
RB. Each enterprise is then able to customize how it allocates
the virtual RBs to its UEs by using virtual control functions at
the gNB to specify its own scheduling policy [9,10]. Note that
both the inter-slice scheduler and enterprise scheduler run on
the gNB which enables RadioSaber to expose the enterprise
scheduling algorithms to the inter-slice scheduler as described
in more details in §4.1.
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Figure 3: (a) Illustrative example showing the importance of a channel aware inter-slice scheduler. (b) Distribution of the capacity
of RBs from real traces. (c) Example showing the challenge in enabling a channel aware inter-slice scheduler.

The closest to our work is NVS (Network Virtualization
Substrate) [21], a popular inter-slice scheduler that is used
by multiple RAN slicing schemes [9, 21–23, 26]. NVS allo-
cates all RBs in a given TTI to a single slice independent of
channel quality. It then rotates between slices in a weighted
round-robin manner to satisfy the target throughput of each
slice as specified by SLA. While NVS does allow the enter-
prise scheduler to run a channel aware policy, the inter-slice
scheduler remains agnostic to channel quality which changes
over time and resource blocks. We compare with NVS in §6
and show that our channel aware inter-slice scheduler can
significantly improve performance.

Past work on slicing radio resources also explores support-
ing dynamic demands across slices [40, 47] and deadlines
across slices [12, 15]. All past work, however, constraints the
inter-slice scheduler to allocate virtual RBs to each slice in a
channel-unaware manner. Our goal, in contrast, is to enable
channel-aware scheduling at both inter-slice and enterprise
levels, while still giving each enterprise enough flexibility to
allocate RBs across its users.

3 Motivation and Challenges

In this section, we will explain, using illustrative examples,
the importance of channel aware resource allocation at both
the inter-slice scheduler and enterprise scheduler as well as the
challenge in making the inter-slice scheduler channel aware.

3.1 Need for Channel-Aware Slicing
To best illustrate the need for channel-aware slicing at both
the inter-slice scheduler and enterprise scheduler, consider
the toy example in Fig. 3(a). In this example, there are 4
RBs {R1,R2,R3,R4}, 2 slices {S1,S2}, and each slice has 2
UEs: {u1,u2} ∈ S1 and {u3,u4} ∈ S2. The channel quality is
shown in the left 2D grid in terms of the data rate each UE
can achieve on each RB in kb/s. The enterprise scheduler of
both slices are channel-aware and run a proportional fairness
(PF) policy in order to maximize throughput while ensuring
fairness between UEs.

Consider a channel unaware inter-slice scheduler. The
scheduler could allocate all RBs in the first TTI to S1 and

all RBs in the second TTI to S2 similar to NVS [21]. In this
case, the enterprise scheduler of S1 would allocate {R1,R3}
to u1 and {R2,R4} to u2. Similarly, the enterprise scheduler
of S2 would allocate {R1,R3} to u3 and {R2,R4} to u4. This
allows each UE to achieve 10 kb/s over the two TTIs for a
total of 40 kb/s. An alternative channel unaware inter-slice
scheduler could have also divided the RBs between the two
slices by allocating {R1,R2} to S1 and {R3,R4} to S2 for all
TTIs. In this case, the enterprise scheduler of S1 would allo-
cate {R1} to u1 and {R2} to u2 and that of S2 would allocate
{R3} to u3 and {R4} to u4. This allows each UE to achieve a
data rate of 5 kb/s for a total of 20 kb/s. Since the inter-slice
scheduler is channel-unaware, it has no way of figuring out
that such an allocation is very inefficient.

Consider, on the other hand, a channel-aware inter-slice
scheduler. This scheduler would allocate {R3,R4} to S1 and
{R1,R2} to S2 for all TTIs. In this case, the enterprise sched-
uler of S1 would allocate {R3} to u1 and {R4} to u2 and that
of S2 would allocate {R1} to u3 and {R2} to u4. This allows
each UE to achieve a data rate of 15 kb/s for a total of 60 kb/s.
Hence, the channel-aware inter-slice scheduler enables 1.5×
to 3× higher throughput.

There are two factors in this example that enable a channel-
aware scheduler to achieve better performance than a channel-
agnostic scheduler: (i) The channel quality differs across RBs
for a given slice, and (ii) The two slices have complementary
channel quality distribution across RBs (i.e. slice 1 has a better
channel quality for the first two RBs, and slice 2 has better
channel quality for the last two RBs). It is the combination of
these factors that enables a smarter (channel-aware) resource
allocation policy to achieve better performance. Moreover,
such factors are quite common in practice as can be seen from
the real traces shown in Fig. 2.

While this toy example illustrates the insight behind Ra-
dioSaber, the variation in channel quality in real systems can
be quite significant as was shown in Fig. 2. Fig. 3(b) plots
the cumulative distribution function (CDF) of capacity of all
the RBs in a real trace collected from 4G measurements (ob-
tained from [46]). The figure shows that the channel in real
traces can vary significantly leading to a capacity that can be
as high as 2.2× the median value and as low as 1/20 of the
median value. This diversity which is a result of frequency



selective fading in the wireless channel is expected to further
increase in 5G as the bandwidth increases from 10-20 MHz
to 100-400 MHz [6].

Our evaluation in §6 shows that due to this diversity, our
simple insight from the toy example generalizes to more
complex scenarios.

3.2 Challenge in Channel-Aware Slicing

In order to allocate RBs across slices in a channel-aware
manner, we first need to know what channel quality each slice
would achieve for each RB. While in the above toy example
it is easy to see what the best channel aware allocation is, the
problem is challenging in more general settings. In particular,
if the inter-slice scheduler gives RB Ri to slice S j, then the
channel quality of Ri will depend on which UE belonging to S j
will use Ri which in turn depends on the enterprise scheduling
policy. However, the enterprise scheduling policy itself could
be channel-aware, in which case, the allocation of Ri to a
given UE will depend on which RBs the inter-slice scheduler
has allocated to S j. This creates a deadlock as the inter-slice
scheduler needs to know how the enterprise scheduler will
allocate Ri to determine its channel quality and whether to
give Ri to this slice. At the same time, the enterprise scheduler
needs to know what RBs the inter-slice scheduler will give it
so it can allocate them in a channel-aware manner.

Fig. 3(c) illustrates this through a toy example. Consider
a slice with three UEs {u1,u2,u3}. Suppose the inter-slice
scheduler must allocate two RBs to this slice (as per its
weighted share) and suppose the enterprise scheduling pol-
icy assigns a RB to the user which has maximum data rate
for the RB, while limiting each user’s allocation to a single
RB. If the inter-slice scheduler allocates {R1,R2} to the slice,
then the enterprise scheduler would first allocate R2 to u2 and
then allocate R1 to u3. However, if the inter-slice scheduler
allocates {R1,R3} to the slice, the enterprise scheduler would
allocate R1 to u2 and R3 to u1. The data rate associated with
R1 for this slice is 10 kbps in the first case and 15 kbps in the
second case. Hence, while determining whether to allocate
R1 to this slice or not, the inter-slice scheduler does not know
the data rate that R1 will deliver as it depend on whether the
other RB allocated to the slice is R2 or R3.

One way out is to enumerate through all possible combina-
tions of inter-slice allocations, and run the enterprise sched-
uler for each slice for each allocation. However, this is clearly
intractable with the number of possible allocations increasing
exponentially with the number of slices and resource blocks.

3.3 RadioSaber’s Approach

In order to break the deadlock challenge outlined in §3.2, we
leverage the following insights. First, both the inter-slice and
enterprise scheduler must run on the base station (gNB) to

guarantee real-time scheduling. Hence, the inter-slice schedul-
ing algorithm can use the enterprise scheduling algorithm as
a subroutine and query it to figure out how it will allocate a
certain RB. Second, we can break the deadlock if the enter-
prise scheduler is able to reply to the following query from
the inter-slice scheduler: “If I give resource Ri to slice S j,
which UE in slice S j will get resource Ri?”.

For the enterprise scheduler to be able to reply to this query,
its algorithm should determine how to allocate a RB indepen-
dent of other RBs that the inter-slice scheduler might allocate
to it. Restricting the enterprise scheduling algorithm to greed-
ily allocate one RB at a time makes it independent of the
remaining RBs that will be allocated to it. It may still need to
account for the historical allocation of RBs (i.e. RBs already
assigned to the slice) to correctly estimate the remaining de-
mand of a user or to account for fairness. A greedy inter-slice
scheduler, that assigns RBs to slices one at a time, enables the
enterprise scheduler to update its scheduling state based on
its allocation so far. Restricting both scheduler to be greedy
thus enables the enterprise scheduler to effectively answer
the query while still accounting for historical allocation, and
for the inter-slice scheduler to use the result of the query to
assign the RB to the slice with the best channel quality.

4 RadioSaber’s Design

Objectives. RadioSaber tackles the problem of dividing N
RBs (over one or more TTIs) across K slices, and then divid-
ing the RBs allocated to each slice across the UEs within that
slice, such that the following objectives are met:
(i) Weighted fairness across slices. Each slice must get its
weighted fair share of resource blocks. We assume that the
weights are known and are proportional to each slice’s demand
(based on the SLA between the slice owner and the cellular
network operator). Prior work on RAN slicing [22] shows how
SLAs can be specified either in terms of number of RBs or
overall throughput, and how both can be translated to dynamic
per-slice weights. We use these weights to compute a quota
of RBs for each slice, as detailed in §4.1.
(ii) High spectrum efficiency. The system must allocate RBs
across slices so as to use the spectrum efficiently and achieve
high overall throughput. For this, RadioSaber uses the ap-
proach outlined in §3.3 to greedily determine which RBs are
allocated to a slice to fulfill its quota in a channel-aware man-
ner. We detail RadioSaber’s greedy channel-aware inter-slice
scheduling algorithm in §4.1.
(iii) Customizable enterprise scheduler. Each slice can have
a different policy for dividing the RBs allocated to it across
its UEs and flows. The system should provide an expressive
interface for slice operators to specify their desired policies,
and should be able to enforce them. §4.2 describes RadioS-
aber’s framework for supporting a variety of greedy enterprise
schedulers.



After describing individual components of RadioSaber’s
design, we end this section with describing our overall work-
flow for RAN slicing in §4.3.

4.1 Inter-slice Scheduler

We divide inter-slice scheduling logic into two steps: (i) com-
puting the quota of RBs for each slice in a TTI, and (ii) greed-
ily allocating RBs to slices as per their quota in a channel-
aware manner. 3 We detail these steps below.
Computing Per-slice Quotas. In each TTI, RadioSaber first
computes the quota of RBGs (the granularity at which RBs
are allocated) for each slice, based on per-slice weights. Let
the number of RBs and the number of RBGs in each TTI be
|R B| and |R BG | respectively. A naive strategy is to simply
compute the quota of slice s as ws|R BG |, where ws is the
normalized weight of the slice. However,there are a few prac-
tical considerations: (i) The quota for a slice computed in
this manner could be non-integral (and possibly less than 1,
depending on the number of other slices and their weights).
We cannot have non-integral allocation of RBGs. (ii) If |R B|
is not a perfect multiple of the default number of RBs in each
group (say k), then the last RBG will have fewer RBs.

RadioSaber accounts for these aspects by maintaining an
offset from the (ideal) target share of RBs for each slice, that
rolls over to the next TTI. Algorithm1 presents the pseudo-
code. We first compute the target share of each slice (in num-
ber of RBs) as its absolute weighted share in a TTI (given
by ws|R B|) subtracted by its rolling offset from the previous
TTIs (initialized to zero for a new slice). We then set the quota
for the slice (in number of RBGs) as its target share divided
by k, and round down the result. Because of the rounding
down, the sum of quota across all slices would be less than
the available number of RBGs. We then increment the quota
of a random set of slices by one, so as to account for all of
the extra RBGs. This can result in a few slices getting less
than their fair share of RBs, and a few slices getting more. We
capture this by updating the offset for each slice. This offset
is then taken into account when computing the quotas in the
next TTI – the slices that get more than their fair share of RBs
in the current TTI will have a positive offset and a lower share
in the next TTI, while the slices that get less than their fair
share of RBs in the current TTI will have a negative offset
and a higher share in the next TTI.

As mentioned above, one of the RBGs allocated to a slice
may have fewer than k RBs. We account for this by adjusting
the offset of the slice that is allocated the aberrant RBG when
assigning RBGs to slices (we skip mentioning this step when
discussing our assignment algorithm below).
Assigning RBGs to Slices. Given per-slice quotas, we next

3RadioSaber follows the standard practice of making radio resource al-
location decisions at timescales of a TTI (§2). Consequently, any temporal
variations in a UEs CQI is naturally accounted for when recomputing the
schedule over each subsequent TTIs.

Algorithm 1 Calculating RBGs quota for slices
1: variable rbs_offset_
2: procedure SLICEQUOTA
3: rbs_share = []
4: rbgs_quota = []
5: k← rbs_per_rbg()
6: for s in S do
7: rbs_share[s]← |R B|×ws - rbs_offset_[s]
8: rbgs_quota[s]← ⌊ rbs_share[s] / k ⌋
9: end for

10: extra_rbgs = |R BG | - sum(rbgs_quota)
11: while extra_rbgs > 0 do
12: rbgs_quota[S .rand()] += 1
13: extra_rbgs -= 1
14: end while
15: for s in S do
16: rbs_offset_[s] = rbgs_quota[s] × k - rbs_share[s]
17: end for
18: return rbgs_quota
19: end procedure
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Figure 4: Allocating three RBs to three slices with same
weights using different strategies.

need to assign RBGs to slices in a channel-aware manner, so
as to maximize spectrum efficiency. Even if we assume that
the channel-quality (or the data-rate) associated with each
slice for each RBG is known in advance (which, as illustrated
in §3, is not the case), computing the optimal assignment of
RBGs that maximizes the total data-rate, while adhering to
the quota on RBGs for each slice is an NP-hard problem. 4

A greedy heuristic is therefore a natural choice for finding (a
potentially sub-optimal) solution to this problem. But more
importantly, as discussed in §3.3, a greedy approach allows
the inter-slice scheduler to effectively query the enterprise
scheduler and determine the channel quality for each RBG.

The basic allocation logic then becomes relative straight-
forward: In each TTI, RadioSaber greedily picks a RBG and
assigns it to the slice that achieves the maximum channel
quality for that RBG. Once a slice has been allocated its quota
of RBGs, it is no longer considered for subsequent RBGs
allocation in that TTI.

The order in which the inter-slice scheduler allocates

4It reduces to an Integer Linear Programming problem [45].



Algorithm 2 Assigning RBGs to slices
1: procedure RBALLOCATION
2: rbgs_quota← sliceQuota()
3: rbgs_assignment = []
4: slice_user = [] ▷ Users that each slice decides to

schedule for all RBs
5: slice_cqi = [] ▷ Channel qualities of each slice(based

on scheduled users) for all RBs
6: slice_rbgs = []
7: for i in range(|R BG |) do
8: for s in S do
9: u∗ ← s.enterpriseScheduler(i)

10: slice_user[i][s]← u∗

11: slice_cqi[i][s]← u∗.channelQuality(i)
12: end for
13: end for
14: while rbs_assignment.size() < |R BG | do
15: i∗,s∗ ← argmaxi,s slice_cqi and i not in

rbgs_assignment and slice_rbgs[s] < rbgs_quota[s]
16: u∗ ← slice_user[s∗]
17: u∗.allocRB(i∗)
18: rbgs_assignment[i∗] = u∗

19: slice_rbgs[s∗] += 1
20: if slice_rbgs[s∗] >= rbgs_quota[s∗] then
21: Continue
22: end if
23: for i in range(|R BG |) do
24: u

′ ← s∗.enterpriseScheduler(i)
25: slice_user[i][s∗]← u

′

26: slice_cqi[i][s∗]← u
′
.channelQuality(i)

27: end for
28: end while
29: end procedure

the RBGs can impact spectrum efficiency. Fig. 4 illus-
trates this with an example. It shows the channel quality
(datarate) associated with three slices {s1,s2,s3} for three
RBGs {R1,R2,R3}. Each slice has a quota of 1 RBG. As-
signing RBGs sequentially in the order {R1,R2,R3} to the
slice that has maximum datarate (until it exhausts its quota)
results in a total datarate of 50Kb/s. In comparison, allocating
RBGs in decreasing order of channel quality achieves a higher
datarate of 60Kb/s as it greedily selects the best RBG-slice
mapping (in terms of datarate) in each iteration. RadioSaber
adopts this strategy for inter-slice scheduling.

While this greedy strategy results in a better outcome than
the sequential allocation, it does not produce the optimal re-
sult. In fact, the optimal allocation for the example in Fig. 4
would have resulted in a higher datarate of 65kb/s. This sub-
optimality is expected from any polynomial time algorithm,
given the NP-hardness of our resource allocation problem.

Algorithm2 presents the pseudo-code for RadioSaber’s
inter-slice scheduler. It computes maximum channel quality

across slices for each unallocated RBG (lines 7-13). It allo-
cates the RBG with the highest channel quality (say i∗) to the
corresponding slice (s∗) that has the highest channel quality
for it (line 15). If the quota for slice s∗ is not exhausted, it re-
computes the channel quality for the remaining RBGs for that
s∗ (lines 20-24). This recomputation is needed because the
previous allocation may influence how the enterprise sched-
uler in s∗ schedules UEs for subsequent RBGs allocated to it
(e.g. if a UE has met its demand or to ensure fairness across
UEs). The above steps are then repeated to proceed with the
allocation of the next RBG.

This algorithm has a polynomial time complexity of
O(|R BG |2(|S |+T )+ |R BG ||S |T ) in the worst case, where
T is the time complexity of the enterprise scheduler for assign-
ing an RBG to a UE (this is typically O(|U|) for |U| UEs in
a slice for the greedy enterprise scheduler described in §4.2).

4.2 Customizable Enterprise Scheduling
We now describe RadioSaber’s framework for supporting dif-
ferent enterprise scheduling policies. Restricted by the need
for the enterprise scheduler to be greedy (§3), and inspired by
existing channel-aware wireless schedulers (described in §2),
we adopt a metric-based allocation strategy. The enterprise
scheduler computes a metric for each UE for the RBG it is
assigned (or queried about by the inter-slice scheduler) and se-
lects the UE that scores highest on that metric. These metrics
are parameterized – RadioSaber exposes these parameters to
the slice operators, allowing them to tune the parameters in
order to express different scheduling policies. 5

At a high-level RadioSaber allows the slice operator to
specify a variety of policies based on flow priorities, fairness
across UEs, channel-quality, and packet delays. It supports
two scheduling paradigms:
Paradigm 1: Select User First. This paradigm assigns a
given RBG i to a UE that scores the highest on the follow-
ing metric (corresponding to the generalized PF [45]), and
schedules the highest priority flow belonging to that UE.

metric(u, i) = dε
u,i/Rψ

u

Here, du,i is the instantaneous data rate of UE u for RBG i, and
Ru captures the historical RBG allocation for the UE u as an
exponential weighted moving average of the user’s through-
put, based on its datarate for the RBGs it has been assigned
so far. The parameters, ε and ψ, are integers that determine
the relative weightage of channel quality and historical allo-
cation. For example, setting ε = ψ = 1 instantiates the default

5RadioSaber makes an implicit assumption that each slice operator wishes
to implement a customized scheduler, and accordingly specifies the schedul-
ing parameters that allow RadioSaber’s enterprise scheduling framework to
answer the inter-slice scheduler’s query and to allocate resources. For slices
that do not wish to implement a customized policy, RadioSaber can initialize
the scheduling parameters to reflect the default scheduling policy decided by
the network operator.



PF(proportional fairness) scheduler, or setting ε= 1 and ψ= 0
instantiates the MT(maximum throughput) scheduler.
Paradigm 2: Select Highest Priority First. This paradigm
always assigns a given RBG i to the flow with highest priority.
When the highest priority level (p) has multiple flows (across
multiple UEs), it selects a flow (or a UE) 6 based on the
following metric (from [2, 4]):

metric(u, p, i) = (βDu,p +(1−β))(dε
u,i/Rψ

u )

Here, Du,p is the queuing delay experienced by the packet at
the head of the queue corresponding to UE u and priority p. β

is a binary parameter that determines whether the head packet
delay (Du,p) influences the choice of UE. du,i, Ru, ε and ψ are
as described above. Setting β = ε = ψ = 1 instantiates the
M-LWDF(Modified-Largest Weighted Delay First) Scheduler
[2].

A binary parameter α allows a slice operator to pick be-
tween the two paradigms (α = 0 picks the first paradigm and
α = 1 picks the second paradigm).

In summary, there are four parameters that RadioSaber
exposes for tuning the enterprise schedulers:
(1) α that determines whether a UE is selected first or the
priority level.
(2) ε that determines the weightage of channel quality.
(3) ψ that determines the weightage of historical allocation.
(4) β that determines whether the head packet delay is a factor.
A slice operator can tune these parameters differently to ex-
press different policies, as per their requirements and work-
load. These parameters are initialized when the slice operator
creates the slice, and are stored in the data repository in the
5G core (as detailed in §4.3). 7

While our enterprise scheduling approach is heavily in-
spired from existing wireless scheduling techniques, we in-
troduce some new aspects. In particular, cellular schedulers
typically do not consider different priority levels for a given
UE. Instead, they map all flows belonging to a UE to a single
queue (the default radio bearer). We introduce the notion of
different priority levels for each UE, as we believe that is an
important requirement for emerging applications where each
UE may have different types of flows.

4.3 RAN Slicing Workflow

We now explain the RAN slicing workflow for RadioSaber.

6We assume each UE has a single flow at each priority level. Even if a
UE has multiple flows for a given priority level, they are served in a FIFO
order with respect to one another, and we can logically treat them as a single
flow.

7We assume that the slice operators are fine with sharing their coarse-
grained scheduling policies with the network operators (in the form of these
parameters). Extending our system to provide a secure environment for the
slice operators to schedule their UEs and to answer the inter-slice scheduler’s
query in manner that does not reveal the scheduling policies is an interesting
future direction, that is beyond the scope of this paper.
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4.3.1 Relaying Slice Context to gNB

The relevant slice context for RadioSaber includes the slice ID,
a list of its users, the slice SLA (or weight), and the enterprise
scheduling parameters. When the slice operator registers a
new slice, this context is initialized and stored in the 5G core.
When a user belonging to this slice attaches to a gNB, the
relevant context must be relayed from the 5G core to the gNB
for RAN slicing. We now describe the workflow for it.

Fig. 5 shows different modules of 5G core. The modules
relevant for RadioSaber’s workflow are shaded in blue. UDM
& UDR (Universal Data Management & Repository) manages
and stores all user-related data including slice contexts. AMF
(Access and Mobility Function) manages different aspects of
a UE (other than data forwarding) – these include connection,
reachability, mobility, authentication, authorization, and lo-
cation services. NSSF (Network Slicing Selector Function)
handles slice selection request and manages the life cycle of
a network slice instance.

Standard implementations for 5G core provide a framework
to support core slicing. We extend it for RAN slicing with
RadioSaber by adding the following workflow:
(1) When a UE tries to connect, it issues a registration request
to the gNB, which then forwards the request to the AMF.
(2) The AMF in turn issues a request to the NSSF to fetch the
slice context associated with the UE.
(3) If the corresponding slice instance is not available at the
NSSF, it means that the UE is the first to register for the slice.
The NSSF then constructs the slice instance based on the slice
context stored in the UDM, and passes the context to the AMF
in response. If an instance for the slice is already available at
the NSSF, it directly responds to AMF.
(4) The AMF then relays the slice context obtained from
NSSF to gNB through the NGAP(NG Application Protocol).
(5) The gNB uses the information received from the AMF
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to create a RAN slice runtime instance if that UE is the first
to register for that slice at the gNB. Otherwise, it uses the
information to determine the slice ID for the UE, and map the
UE to the corresponding RAN slice instance.

4.3.2 Scheduling at gNB

The gNB stores the slice context obtained from the 5G core
at the RRC (Radio Resource Control). The IP packets arrive
at the gNB from the UPF (User Plane Function), and are in-
tercepted by the PDCP (Packet Data Convergence Protocol).
PDCP is responsible for compressing IP headers and cipher-
ing data for integrity protection. For RadioSaber, it parses the
packet priority from the DSCP field in the IP header.

Typically, a gNB maintains a single queue for each UE
associated with a single QoS level (radio bearer) [32]. To
support multiple priority levels within a UE, we simply allow
multiple discrete priority queues (radio bearers) for each UE. 8

Upon parsing the priority level from the packet header, the
PDCP can then forward the packets to the radio bearer with
the corresponding UE and priority level.

The packet scheduler in the gNB uses the slice context
stored in the RRC (that includes slice weights and enterprise
scheduling parameters) and the per-UE context (including its
periodically updated CQI and historical allocations) to run
both the inter-slice and the enterprise schedulers.

5 Implementation

5G Core Support. We extend Open5GS (an open-source
5G core) [1] to add support for the RadioSaber workflow de-
scribed in §4.3.1. Open5GS already provides a framework
for core slicing. We add the serialization and deserialization

8We expect a typical deployment to support 4-8 priority levels.

procedure of our RAN slice context, and the communication
between the AMF and gNB for the construction and destruc-
tion of RAN slice runtime. This implementation comprises
530 lines of code in total.

RAN Slicing and Scheduling Logic. Due to high overhead
and massive cost of deploying a base station and scaling to
large number of users, we evaluate our system using trace-
driven simulations. We implement RadioSaber’s RAN slicing
and scheduling logic in an open-source RAN simulator [34].
By default, the simulator was configured to use LTE settings.
We extend it to support 5G configuration. In particular, we
configure the downlink bandwidth to 100MHz and the TTI
to 250µs. We set the guard band to 3920KHz so there are
128 RBs and 32 RBGs in total. We also add support for some
practical considerations (e.g. CQI reporting intervals). We
ensure that UEs report subband CQI every 40ms, at a granu-
larity that covers 4 RBs. We extend the simulator to support
multiple priority levels for each UE. Moreover, we imple-
ment multiple scheduling policies in the simulator, including
RadioSaber’s inter-slice scheduler, the inter-slice scheduling
logic in NVS [22], and the enterprise scheduling policies.

As detailed in §6, we use this simulator to do trace
driven simulations to evaluate RadioSaber, using traces from
LTScope [46]. These traces measure LTE signal strength
(SNR over time and sub-carriers) for major US mobile carri-
ers. We extend those measurements to 5G by concatenating
five randomly selected distinct measurements of the 20 MHz
LTE bandwidth to generate measurements over a 100 MHz
5G bandwidth.

6 Evaluation

We use the simulator described in §5 to evaluate RadioSaber.
Our evaluation results in the following key takeaways:
• RadioSaber achieves higher overall throughput than
the state-of-the-art (channel-unaware) inter-slice scheduler,
NVS [9, 21, 22] (§6.1).
• RadioSaber can correctly enforce isolation and weighted
fairness across slices (§6.1).
• RadioSaber is able to support diverse and customizable
enterprise scheduling policies. The throughput wins with Ra-
dioSaber over NVS translate to better performance on the
corresponding slice-specific metrics (§6.2).
• Complementary CQI distribution across slices is required
for channel awareness to produce throughput gains (§6.3).
• RadioSaber’s performance benefits hold as we vary the
number of slices and UEs/slice (§6.4).
• RadioSaber performs better than NVS with non-greedy PF
enterprise schedulers(§6.5).
• RadioSaber performance is very close to our (contrived)
upperbound (§6.6).
• The scheduling latency of RadioSaber is within a TTI and
the runtime overhead is low (§6.7).
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Figure 7: Comparing RadioSaber with NVS and no slicing. Number of slices is fixed to 20, with 5-15 UEs in each slice. The first
10 slices use MT and the next 10 use PF enterprise schedulers (except for no slicing, which uses a global PF scheduler).

6.1 Spectrum Efficiency and Fairness

We first evaluate how RadioSaber can achieve both high spec-
trum efficiency and fairness between slices. We configure our
experiment to use 20 slices, and randomly assign between 5 to
15 UEs to each slice. While we expect there to be hundreds of
slices, and hundreds of UEs associated with each slice, only a
few of them will be active (and in the geographical vicinity)
of a given gNB.

We configure all slices to have the same weight. To evaluate
total spectrum efficiency of RadioSaber, we instantiate each
UE with a single backlogged flow. The enterprise scheduler-
ing policy is configured to follow MT scheduling for the first
10 slices (with β = 0, ε = 1, and ψ = 0), and PF scheduling
for the last 10 slices (with β = 0, ε = 1, and ψ = 1).

We compare RadioSaber with two baselines in this exper-
iment: (i) NVS, with a channel-agnostic inter-slice sched-
uler described in §2, and the same (channel-aware) enterprise
schedulering policy for each slice as described above; (ii) No-
Slicing, which uses a global PF scheduler to schedule UEs
without any notion of slicing.

Fig. 7(a) shows the number of resource blocks allocated
to each slice over intervals of 1 second. Both RadioSaber
and NVS allocate same shares of radio resources to slices
since each slice is configured to have the same weight. In con-
trast, No-Slicing cannot guarantee the same level of fairness
across slices. With No-Slicing, the allocated RBs for a slice
is roughly proportional to the number of UEs in the slice.

Fig. 7(b) shows the aggregate average throughput achieved
by each slice. We see that, even though NVS and RadioSaber
allocate the same number of RBs to each slice, RadioSaber
achieves better throughput than NVS for each slice by en-
abling a better (channel-aware) assignment of RBs to slices.
As expected, for both RadioSaber and NVS, the first 10 slices
(that use MT schedulers) achieve higher average throughput
than the last 10.

Fig. 7(c) shows the overall throughput computed as the
total number of bytes transmitted across all UEs and over all
TTIs and divided by the total number of TTIs in the experi-
ment run. RadioSaber achieves 51% higher throughput than

Slices Scheduler
(α,β,ε,ψ) Traffic generation Metrics

1-5 PF(0,0,1,1) a backlogged flow average throughput

6-10 PF(1,0,1,1) heavy-tail distributed
flows

FCT(Flow Com-
pletion Time)

11-15 PF(1,0,1,1) heavy-tail distributed
flows(25% prioritized)

FCT of prioritized
flows

16-20 M-LWDF
(1,1,1,1)

a 1280kbps real-time
video flow

average queueing
delay

Table 2: Scheduling configuration, workloads per user, and
metrics to evaluate in different slices.

NVS and 11% higher throughput than No-Slicing. The higher
throughput compared to NVS comes from channel-aware
inter-slice scheduling with RadioSaber. The higher through-
put compared with No-Slicing stems from the first 10 slices
applying MT enterprise schedulers as compared to all UEs be-
ing scheduled as per the PF policy with No-Slicing (that does
not have any notion of customizable per-slice scheduling).

We also evaluated a setting where slices differ in their
weights. Both NVS and RadioSaber adhered to the speci-
fied per-slice weights when allocating RBs, while No-Slicing
could not, and RadioSaber achieved better throughput than
NVS. We present these results in Appendix§A.1.

If No-Slicing used MT instead of PF, it would have neces-
sarily achieved a better overall throughput than RadioSaber,
but would have failed to provide weighted fairness across
users. In contrast, RadioSaber strives to maximize throughput
while meeting this basic objective of isolation and fairness
across RAN slices.

6.2 Diverse Enterprise Schedulers

We now evaluate how RadioSaber supports diverse and cus-
tomizable enterprise schedulers, and maintains isolation be-
tween slices. We compare against the same baselines: NVS
and No-Slicing. We consider a total of 20 slices, and ran-
domly assign between 5-15 users to each slice. We group the
slices into 4 categories, with 5 slices in each category. Table
2 summarizes the configuration for slices in each category,
including the enterprise scheduler, workloads per user, and



Slices Metrics RadioSaber NVS No-
Slicing

1-5 throughput (Mbps) 13.02 8.45 17.41
6-10 average FCT(s) 2.606 5.708 5.714
11-15 average FCT(s) 0.489 1.686 2.988

16-20 average queueing
delay(s) 0.061 1.493 0.696

Table 3: Experiment results w.r.t different metrics in all slices
of RadioSaber and baselines.

metrics: (i) Slices 1-5 use PF based enterprise scheduling
policy. Every user in a slice instantiates a backlogged flow,
and we measure the average aggregate throughput as the met-
ric. (ii) Slices 6-10 also use PF based enterprise scheduling
policy. Each slice in this category generates flows with Pois-
son inter-arrival time, arriving at an average rate of 12Mbps,
following a heavy-tailed Internet flow distribution [28]. It ran-
domly and evenly assign these flows to its UEs. We measure
the FCT(Flow Completion Time) of flows as the evaluation
metric. (iii) Slices 11-15 use the same workload generator as
the previous category, but assigns a higher priority to 25%
of the flows (that are randomly selected). We measure the
FCT of prioritized flows as the key metric. (iv) For slices 16-
20, each user streams a real-time video flow with 1280kbps
average bitrate. Each slice applies the M-LWDF policy for
enterprise scheduling, to ensure low packet delays for the real-
time streaming. We compute per-packet queuing delays as
the key evaluation metric. We configure the weights of slices
16-20 to be 2× higher than the weights of the other slices.

Table 3 summarizes the results (aggregating the slice-
specific metrics across all slices in each category). We
also present the CDF of different metrics, to highlight the
performance differences at different percentiles in the Ap-
pendix§A.2.

We find that RadioSaber consistently outperforms NVS
across all slice-specific metrics, with 1.5× higher throughput
for slices 1-5, 2-4× lower FCT for slices 6-15 and 24× lower
packet delays for slices 16-20. This shows that the throughput
wins of RadioSaber directly translate to other relevant metrics
such as flow completion time and packet delays. No-Slicing
achieves higher throughput than RadioSaber for slices 1-5
which have backlogged flows, but fares significantly worse
in the performance metrics for other slices (with 2-7× higher
FCT in slices 6-15 and 10× higher packet delays in slices 16-
20). This is because: (i) No-Slicing cannot provide isolation
across slices and correctly enforce weighted fairness. Instead,
it ends up allocating a larger share of RBs to the first category
of slices (1-5) which have more number of active users at any
given time (as they are all backlogged). (ii) No-Slicing’s PF
policy is not compliant with the requirements of other slices
(i.e. prioritization for slices 11-15 and low packet delays for
slices 16-20)

NVS RadioSaber0

50

100

150

200

250

300

Th
ro
ug

hp
ut
(M

bp
s)

(a) Real Trace

NVS RadioSaber0

50

100

150

200

250

300

Th
ro
ug

hp
ut
(M

bp
s)

(b) Synthetic: no varia-
tion in sub-band CQI

NVS RadioSaber0

50

100

150

200

250

300

Th
ro
ug

hp
ut
(M

bp
s)

(c) Synthetic: non-
complementary
subband CQI

Figure 8: Experiments with different types of CQI traces

6.3 What Makes RadioSaber Win Over NVS?

We now validate the intuition discussed in §3, that the through-
put gain from channel-aware inter-slice scheduling originates
from the complementary channel quality distribution between
slices. We use the same setting as that in §6.1, except that we
generate synthetic CQI reports using the default channel prop-
agation module in our RAN simulator that models losses due
to multipath [19], path loss, penetration and shadowing [34].
Fig. 8(a) shows experiment results from real traces for com-
parison (these results are the same as those presented in §6.1).

In the first experiment, we exclude the multipath loss to
make the channel quality same across all RBs (although the
channel quality still varies across different UEs). Channel
quality variations over time happen at granularity of 40ms
(the CQI reporting interval), which translates to 160 TTIs.
Fig. 8(b) shows that NVS and RadioSaber both achieve the
same throughput. If we consider a 2D grid spanning 20 TTIs
(number of slices in our setup), the channel quality for a UE
neither varies in the frequency domain, nor in the time domain
– so, as long as all slices are assigned RBs as per their quotas,
it does not matter which RBs they get assigned.

In the second experiment, we synthetically make the sub-
band channel distribution non-complementary. For this, we
exclude the multipath loss, and manually decrease SNR of
the first 50MHz channel by 10dB and increase SNR of the
lower 50MHz channel by 10dB. What this implies is that all
UEs have equally high channel quality for the first half of
the RBs in the frequency domain, and equally low channel
quality for the second half. Fig. 8(c) shows that NVS and
RadioSaber again achieve similar throughput with this “non-
complementary” CQI distribution. This is because, with both
NVS and RadioSaber, each RB will produce the same datarate
(that is either high or low), no matter which slice/UE it gets
assigned to.

These results highlight that RadioSaber wins over NVS
when (i) the CQIs differ across UEs in the frequency domain,
and (ii) the CQIs for a RB across different UEs complement
one another (i.e. if some UEs have low CQIs for a given
RB, there are other UEs having high CQIs for it). We found
this to be the case for the LTE cellular traces used in our
experiments, and expect these trends to be stronger for 5G
with larger bandwidths.
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Figure 9: Varying the number of slices (5-15 UEs per slice).

6.4 Varying Number of Slices and UEs per
Slice

We next evaluate the robustness RadioSaber’s throughput
wins over NVS, as we vary the number of slices and the num-
ber of users in each slice. For simplicity of analyzing the
results, we configure each slice to apply the PF enterprise
scheduling policy. We experiment with two types of work-
loads: (i) each user maintains a backlogged flow; (ii) the
heavy-tail distribution of flows across UEs (as described in
§6.2), and an average load of 24Mbps per slice.
Varying number of slices. We increase the number of slices
from 5 to 20 and randomly assign between 5-15 users in each
slice. In Fig. 9(a), we find that with backlogged flows, the
aggregate throughput remains almost unchanged in RadioS-
aber as we increase the number of slices, but the aggregate
throughput keeps dropping in NVS. It shows that the spectrum
efficiency of RadioSaber remains unaffected and scales well
with the number of slices. RadioSaber achieves 17.2%-40.5%
higher throughput than NVS.

We find some interesting trends in Fig. 9(b), with non-
backlogged flows. RadioSaber is able to make better use of
the spectrum as the number of slices increase, which increases
the number of active users (with diverse and complementary
subband CQI distributions) that can be scheduled per TTI.
NVS does not experience a similar trend, and in fact, has
a significantly lower aggregate throughput compared to the
backlogged flows scenario in Fig. 9(a). This is because NVS
allocates all RBs in a TTI to the same slice, and since there
are fewer active users in a slice in this scenario, the multi-
user diversity gain reduces, which reduces the throughput
achieved with the PF scheduler. RadioSaber achieves 37.3%-
50% higher throughput than NVS in this context for 10-20
slices. Note that when there are 5 slices, the throughput is
limited by the total incoming network traffic.
Varying number of UEs. In the second experiment, we fix
the number of slices to 20, and increase the number of UEs
per slice. In Fig. 10(a), the aggregate throughput of NVS in-
creases a little when the number of users per slice increases.
This is reasonable since more users bring more diverse sub-
band channel quality distributions for the PF enterprise sched-
uler in NVS to allocate RBs smartly. However, RadioSaber
still outperforms NVS by 35.2%-56.8%. From Fig. 10(b), Ra-
dioSaber outperforms NVS by 49.7%-72.2% when the flows
are heavy-tail distributed.
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Figure 10: Varying the number of UEs per slice for 20 slices.

6.5 Non-greedy Enterprise Schedulers
Our evaluation so far only considered greedy enterprise sched-
ulers. Indeed, most proposed (and potentially deployed) radio
resource schedulers employ a greedy heuristic to achieve low
runtime overheads [4]. We now compare how RadioSaber
(using a greedy enterprise scheduler for PF) compares against
NVS using a non-greedy heuristic for PF [17]. We briefly ex-
plain the non-greedy heuristic before presenting our results.

A UE can only use a single MCS(Modulation and Coding
Scheme) across all RBs that are allocated to it. The typical
practice is to first assign RBs to users, and then compute the
MCS based on effective SNR across these RBs. The final data-
rate so achieved is less than the sum of the data-rates achieved
if one could use the optimal MCS value for each RB (our
experimental results take this effect into account). Given this
effect, GPF [17] uses a non-greedy heuristic to co-optimize
the MCS assignment and the RB allocation – it samples 300
plausible mappings between each user and a corresponding
MCS value (assuming that all RBs are available for a given
user), and computes the best RB allocation for each of these
MCS mappings. It then selects the MCS mapping and RB
allocation that achieves the highest PF metric.

We evaluate how NVS using the above non-greedy PF
scheduler for each slice compares against NVS and RadioS-
aber using greedy PF enterprise schedulers. We fix the num-
ber of slices to 20 and vary the number of UEs in each
slice. Fig. 11 reports the overall throughput across the three
schemes. We find that NVS with non-greedy PF achieves
13%-19% higher aggregate throughput than NVS with greedy
PF. This better spectrum efficiency results from the tactical
assignment of RBGs and MCS to users. However, the aggre-
gate throughput of NVS (non-greedy PF) is still 14%-18%
lower than RadioSaber since NVS is channel-unaware.

6.6 Is There a Better Inter-Slice Scheduler?
We now evaluate two questions:
(i) What is the impact of assigning RBGs in the order of
decreasing channel quality? For this, we modify RadioS-
aber’s inter-slice scheduler to greedily assign RBGs to the
slices with maximum channel quality in a sequential order
(from top to bottom). We term this strategy as "Sequential".
With this approach, the inter-slice scheduler can query en-
terprise schedulers to determine the channel quality when it
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Figure 11: Comparing RadioSaber (using a greedy PF sched-
uler) with NVS (using a non-greedy PF scheduler). We fix
number of slices to 20, and vary the number of UEs per slice.
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Figure 12: Comparing RadioSaber with a simple greedy inter-
slice scheduler, and with a contrived upperbound. We vary
the number of slices, with 5-15 random users in each slice,
and use MT scheduling policy in each slice.

assigns RBGs, which avoids the need for recomputing chan-
nel quality after each allocation (as in the original inter-slice
scheduling algorithm), resulting in a lower time complexity
of O(|R BG ||S|T ).
(ii) Could we have achieved a better allocation? For this we
compare RadioSaber with an impractical scheme that gives us
an upper-bound on the spectrum efficiency that any inter-slice
scheduler can achieve. In this scheme, we greedily allocate
the RBG with the best channel quality to each slice until the
slice’s quota is exhausted. However, in doing so we allow a
given RBG to be repeatedly allocated to multiple slices. As
a result, each slice gets its best set of RBGs, independent of
the allocation for other slices. Note that this upperbound still
enforces fairness between slices, and allows customizable
enterprise scheduling within each slice.

To make it easier to analyze the inter-slice schedulers we
configure the enterprise scheduler in each slice to use the
MT policy. We evaluate the overall throughput as we vary
the number of slices, with 5-15 users in each slice. Fig. 12
shows that RadioSaber performs only 4%-6% worse than
Upperbound and 6%-10% better than Sequential. We see
similar trends across other settings (e.g. using PF policy in
each slice, varying the number of users, etc).

The key takeaways are: (a) RadioSaber’s inter-slice
scheduling policy is close to optimal, and (b) Even the simple
channel-aware greedy inter-slice scheduler achieves 25%-
36% better throughput than channel-agnostic NVS, and is a
good option if lower time complexity is required, at a cost of
some throughput penalty compared to our current algorithm.
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Figure 13: RadioSaber’s scheduling latency

6.7 Scheduling Latency and Overhead

To evaluate RadioSaber’s scheduling latency and runtime
overhead, we implement its MAC scheduling logic on a sys-
tem using a single Intel Xeon core. For simplicity of analysis,
we configure each slice to apply the PF scheduling policy
with backlogged users. Fig. 13(a) shows how the scheduling
latency increases linearly with the number of slices when the
number of UEs per slice is fixed to 20. Similarly, Fig. 13(b)
shows how the scheduling latency increases linearly with the
number of UEs per slice when the number of slices is fixed
to 20. In both cases, the scheduling system can support as
many as 600 users and make the scheduling decision within
the stringent TTI constraint (250us).

7 Limitations and Future Work

• So far, we have only considered scheduling for downlink
radio resources and not for uplink. The uplink channel ap-
plies SC-FDMA [5], which is similar to OFDMA and allows
radio resources allocation in both time and frequency domain.
This indicates that RadioSaber can be extended to uplink
scheduling. However, it requires more complicated control
information exchange between UEs and the base station. We
leave a detailed exploration of this to future work.
•We only consider scheduling radio resources in a channel-
aware manner for a single gNB. An interesting future direc-
tion is to extend our work in the context of multiple gNBs
with small cells. The problem expands to a 3D allocation
of frequency, time, and space resources in a channel aware
manner.
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Figure 14: (a) the average allocated RBs per second to slices; (b) the average aggregate throughput of slices; (c) the sum total
throughput of three systems
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Figure 15: CDFs of (a) completion time of flows in slices 6-10, (b) completion time for the higher prioritized flows in slices
11-15, and (c) queuing delay of packets in slices 16-20. We cut the graphs at 5s to better highlight the trends.

A Supplemental Evaluation

A.1 Slices with Different Weights
§6.1 evaluated the scenario where every slice has the same
weight. Here we do the same experiment but slightly modify
SLAs of slices: slices with PF schedulers have 3X higher
weights than slices with MT schedulers. Fig. 14 shows the
experiment results. From Fig. 14(a) and Fig. 14(b), it’s obvi-
ous that the last 10 slices get 3X more RBs than the first 10
slices, and approximately 3X higher throughput. Meanwhile,
it’s impossible for No-Slicing to meet the SLAs of slices since
it doesn’t support network slicing between groups of users at
all.

A.2 CDF Graphs of FCT and Queueing Delay
We provide more evaluation results in §6.2. Fig. 15(a) shows
the CDF of flow completion time in the slice 6-10, and
Fig. 15(b) shows the CDF of flow completion time for the
higher priority flows in slices 11-15, and Fig. 15(c) shows the
CDF of queuing delay for slices 16-20. We cut the graphs
at 5s to better highlight the trends. For flows in slices 6-15,
the FCT in No-Slicing is the longest since No-Slicing cannot
enforce fairness for slices in which flows arrive intermittently.
NVS suffers from the longest queuing delay in slices 16-20
due to low spectrum efficiency.
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