
netid: yc28, sie2, jpan22, ruihaoy2 ECE 598 PVB

Final Project Report

Yongzhou Chen(yc28), Emerson Sie(sie2), Junhao Pan (jpan22), Ruihao Yao (ruihaoy2)

1 Algorithm and Protocol

We want to implement the Prism1.0 protocol, especially the transaction block part so as to improve the
throughput of the overall system. Here we’ll list the important algorithms.

1.1 Mining

In our system, every miner will mine transaction blocks and proposer blocks simultaneously. The miner
achieves it by mining a super block, which is a merkle tree containing one transaction block and one proposer
block. The difficulty to mine a proposer block is higher than that for a transaction block.

Algorithm 1 Mining

1: function miningLoop()
2: while True do
3: txContent← getTxContent(txPool)
4: prpContent← getPrpContent(unRefTxBlkPool, unRefPrpBlkPool)
5: parentMT ←MerkleTree(txParent, prpParent)
6: contentMT ←MerkleTree(txContent, prpContent)
7: nonce← randString()
8: header ←< parentMT.root, contentMT.root, nonce >
9: if Hash(header) ≤ ft then . Mined a transaction block

10: i← 0 and break
11: else if ft ≤ Hash(header) ≤ ft + fp then . Mined a proposer block
12: i← 1 and break
13: end if
14: end while
15: return < header, parentMT.proof(i), contentMT.proof(i) >
16: end function

When a node receive a block, it will verify the PoW and abandon it if it’s invalid. If it’s a transaction block,
the node will append it to the unRefTxBlkPool, and remove the redundant transactions in the transaction
pool. If it’s a proposer block, the node will insert it to the proposer chain and request its parent block if it’s
an orphan block.



netid: yc28, sie2, jpan22, ruihaoy2 ECE 598 PVB

Algorithm 2 Receiving a block

procedure receiveBlock(B)
if verify(B, typet) then

txPool.removeTxFrom(B)
unRefTxBlkPool.append(B)

else if verify(B, typep) then
if B.level == prpParent.level + 1 then

prpParent← B
else if B.level > prpParent.level + 1 then

RequestNetwork(B.parent)
end if
prpTree[B.level].append(B), unRefPrpBlkPool.append(B)
unRefTxBlkPool.removeTxBlkRefsFrom(B)
unRefPrpBlkPool.removePrpBlkRefsFrom(B)

end if
end procedure

1.2 TxConfirmation

In Prism1.0, the proposer block tree serves the same purpose as bitcoin block tree. We want to check if a
specific given tx is confirmed in all possible ledger sequence so we store blocks in level order and take outer
product to get all possible sequences of ledgers. Then we could confirm the tx.

procedure TxConfirmed(tx)
ProposerBlkSetList = []
for i from 1 to ProposerTree.maxlevel do

ProposerBlkSetList.append({})
end for
Store proposer blocks in level order by going through each level of the tree
ProposerBlkSeqs = ProposerBlkSetList[1]× ProposerBlkSetList[2]× ...× ProposerBlkSetList[l]

. outer product
for OneProposerBlkSequence in ProposerBlkSeqs do

ledger = BuildLedger(OneProposerBlkSequence)
if tx not in ledger then return False
end if

end for
return True

end procedure

1.3 Ledger Building

When building a ledger, we need a sequence of proposer blocks, one from each block tree level. Then we
perform the necessary ledger sanitization to build a ledger of txs.



netid: yc28, sie2, jpan22, ruihaoy2 ECE 598 PVB

Algorithm 3 Build tx ledger according to given proposer block sequence

procedure BuildLedger(OneProposerBlkSequence)
ledger = []
for ProposerBlk in OneProposerBlkSequence do

refProposerBlks = ProposerBlk.getReferencedProposerBlks()
TxBlks = GetOrderedTxBlks(ProposerBlk, refProposerBlks)
for TxBlk in TxBlks do

Txs = TxBlk.retrieveTxs()
for Tx in Txs do

if Tx is not duplicate nor double spent then
ledger.append(Tx)

end if
end for

end for
end for

end procedure

In this algorithm, we retrieve the transactions from the longest chain of proposer block tree and this ledger
is the final ledger that contains confirmed txs.

Algorithm 4 Get confirmed Txs from proposer tree longest chain

procedure GetOrderedConfirmedTxs()
return BuildLedger(ProposerBlockTree.longestchain)

end procedure

2 System Diagram

The system diagram is virtually the same for the baseline client and the Prism client, since the only significant
changes to the code base are self contained within each module.

3 Experiment

3.1 Experiment Setup

We plan to run 100 processes in the rented AWS or the laptop to emulate 100 miners and 100 accounts. The
difficulty to mine a block should be tuned to a constant value.
In the baseline, the mining rate of blocks is k block per second. In our system, the mining rate of proposer
blocks is the same, while the mining rate of transaction blocks is pk blocks per second. Besides, every proposer
block can have at most M reference links to transaction blocks.

3.2 Experiment Evaluation

To prove that the introduction of transaction blocks can improve the throughput, we’ll set the same network
environment, user payment behavior, and measure the throughput of transactions confirmation in the longest
chain.
We’ll also evaluate the influence of parameters in our system. The parameters include: block size B, mining



netid: yc28, sie2, jpan22, ruihaoy2 ECE 598 PVB

(a) Overall system diagram for baseline and Prism client.

rate of proposer blocks divided by that of transaction blocks p, maximum reference links number M , etc.
On midterm evaluation, we’ll try to finish the whole Prism1.0 blockchain client and make sure it’s running
bug-free. On final evaluation, we’ll move everything either to AWS or a 192.168.XXX.XXX private network
and plot the throughput increases against that of baseline bitcoin client.

3.3 Throughput Experiment

We have implemented the Prism protocol to achieve enhanced throughput. The result of this experiment
has been demonstrated in the video which was presented in the Apr.30th lecture. We also carry out a more
thorough set of experiments to see the advantage of prism over the baseline.

d (base/pr) d (tx) baseline prism

2 32 17.6 662.6
2 64 831.4
4 32 47.2 652.8
4 64 833.8
8 32 89.8 645.6
8 64 841.8
16 32 163.8 657
16 64 835.8

Table 1: Throughput of Baseline vs. Prism

We evaluated Prism against baseline implementation and set the difficulty of proposer blocks equal to that of

https://uofi.box.com/s/rcm6gj0kk742pqxlowusnvbdy0607zen


netid: yc28, sie2, jpan22, ruihaoy2 ECE 598 PVB

blocks in baseline. The results show clear evidence that the mining throughput of Prism protocol is depended
on the the difficulty of transaction blocks. We can set the threshold of difficulty much bigger (easier) for
transaction blocks to obtain higher throughput.

We have also evaluated Prism’s throughput according to the topology of the network. The setting is similar
to what we have done in midterm report for the baseline evaluation. We have tested the line topology against
2-regular, 3-regular, and 4-regular graphs with various threshold of PoW. As shown in figure ??, the results
meet our expectations.

(a) Throughput Comparisons between Different
Topologies

(b) Throughput Comparisons between Different PoW
Thresholds

3.4 Security Experiment

For both the Bitcoin client and Prism client security experiment, we’ve fixed the topology of our Bitcoin
network where there are 4 honest nodes and 1 adversarial node. The security graph is plotted against β∗,
a number between [0, 1], and f∆, which has the unit of f∆0 (∆0 equals 0.2s here). β∗ means the beta
threshold such that the adversarial node always succeeds given a specific value of f∆, which equals the
product of mining rate and propagation delay.
Here we fix f as a constant value, which is the mining rate when the mining difficulty is [0, 8, 0...0︸︷︷︸

30

], and

adjust the propagation delay in terms of seconds. For the propagation delay tuning, we just let the miner
thread sleep for a number of seconds we want.
To simulate the β adversary hash power, we tune the mining threshold of the single adversarial node to get
the expected β, assuming the relationship between mining rate and mining threshold is in positive correlation.
Beginning from 0.5, we decrease β gradually to find the point when the adversary cannot always attack the
system successfully, and that point is our desired β∗. If the attacker can successfully attack the system 10
times continuously with k-depth longer than 10, we view this attacker always succeeds.

For both Prism client and Bitcoin client security plot, they both exhibit a decreasing pattern. This makes
sense because as f∆ gets bigger, the chance of forking gets bigger so that the private attack has a higher
chance to succeed.



netid: yc28, sie2, jpan22, ruihaoy2 ECE 598 PVB

0 f 0 2f 0 3f 0 4f 0

f

0.0

0.1

0.2

0.3

0.4

0.5

0.6

*

* f
bitcoin
prism

Figure 3: Throughput Comparisons between Different Topologies

However, as we can see from the plot, Bitcoin network could tolerate a higher β∗ threshold in general for all
possible f∆. We think the reason is that the traffic in Prism network is much more congested than that in
Bitcoin network. The number of transaction blocks is several times more than that of proposer blocks, and
the broadcast of such many transaction blocks impedes the propagation of proposer blocks in the air and
results in a higher delay. Therefore, it’s harder for the proposer blocks in Prism network to reach consensus.


	Algorithm and Protocol
	Mining
	TxConfirmation
	Ledger Building

	System Diagram
	Experiment
	Experiment Setup
	Experiment Evaluation
	Throughput Experiment
	Security Experiment


